A Hybrid Simplex Non-dominated Sorting Genetic Algorithm for Multi-Objective Optimization
نویسندگان
چکیده
Often, in many engineering applications it is required to find the best approximate solution of multi-objective optimization problems quick and with good accuracy. Multi-objective optimization problems are very common and important in real world applications, and as such many researchers are still working to devise various novel heuristic and mathematical approaches for their solution. Mathematical techniques were more common in the earlier times for optimal solution, but as many of the conventional and especially deterministic pure mathematical optimization schemes suffer from stagnation in local optima, there is a demand for new innovations for heuristic methods [1]. The history of heuristic algorithms as a revolutionary idea for stochastic optimization techniques goes back to 1984 [1,2]. Further, it is notable that stochastic optimization techniques are readily applicable to the real problem because of gradient free mechanism and local optima trap avoidance. Stochastic and multiobjective optimization is in use in different fields of study such as mechanical engineering [3], civil engineering [4], chemistry [5,6] and other [7]. There are also some heuristic algorithms suggested to solve challenging problems in power systems such as cuckoo search algorithm [8], Pseudo-Gradient based Particle Swarm Optimization with Constriction Factor (PG-PSOCF) [9] and Hybrid Particle Swarm Optimization (HPSO) [10].
منابع مشابه
Solving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملSolving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm
This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...
متن کاملMulti-objective robust optimization model for social responsible closed-loop supply chain solved by non-dominated sorting genetic algorithm
In this study a supply chain network design model has been developed considering both forward and reverse flows through the supply chain. Total Cost, environmental factors such as CO2 emission, and social factors such as employment and fairness in providing job opportunities are considered in three separate objective functions. The model seeks to optimize the facility location proble...
متن کاملA method for identifying software components based on Non-dominated Sorting Genetic Algorithm
Identifying the appropriate software components in the software design phase is a vital task in the field of software engineering and is considered as an important way to increase the software maintenance capability. Nowadays, many methods for identifying components such as graph partitioning and clustering are presented, but most of these methods are based on expert opinion and have poor accur...
متن کاملA non-dominated sorting hybrid algorithm for multi-objective optimization of engineering problems
Among numerous multi-objective optimization algorithms, the Elitist non-dominated sorting genetic algorithm (NSGA-II) is one of the most popular methods due to its simplicity, effectiveness and minimum involvement of the user. This article develops a multi-objective variation of the Nelder-Mead simplex method and combines it with NSGA-II in order to improve the quality and spread of the solutio...
متن کاملSolving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by Hybrid Teaching-learning Based Optimization
This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines (UPMs) that minimizesthe maximum completion time (i.e., makespan or ), maximum earliness ( ), and maximum tardiness ( ) simultaneously. Jobs have non-identical due dates, sequence-dependent setup times and machine-dependentprocessing times. A multi-objective mixed-integer linear programmi...
متن کامل